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Abstract Network traffic analysis is one of the core functions in network monitoring for effective network operations and
management. While online traffic analysis has been widely studied, it is still intensively challenging due to several reasons.
One of the primary challenges is the heavy volume of traffic to analyze within a finite amount of time due to the increasing
network bandwidth. Another important challenge for effective traffic analysis is to support multivariate functions of traffic
variables to help administrators identify unexpected network events intuitively. To this end, we propose a new approach with
the multivariate analysis that offers a high-level summary of the online network traffic. With this approach, the current state
of the network will display patterns compiled from a set of traffic variables, and the detection problems in network monitoring
(e.g., change detection and anomaly detection) can be reduced to a pattern identification and classification problem. In this
paper, we introduce our preliminary work with clustered patterns for online, multivariate network traffic analysis with the
challenges and limitations we observed. We then present a grid-based model that is designed to overcome the limitations of
the clustered pattern-based technique. We will discuss the potential of the new model with respect to the technical challenges
including streaming-based computation and robustness to outliers.

Keywords Network traffic analysis, multivariate analysis, time-series similarity, network monitoring

1 Introduction

Analyzing network traffic is an integral part of
network operations and management for various pur-
poses such as traffic engineering, resource provision-
ing, network security, usage statistics, and so forth. In
particular, online traffic analysis is essential to identify
any unexpected events in a real-time manner, including
network anomalies, sudden changes, heavy hitters, etc,
which would be an indication of cyber-attacks, miscon-
figuration of network devices, or network fault [1, 2, 3,
4]. For example, some anomalies may indicate perfor-

mance bottlenecks with a huge number of simultane-
ous connections due to flash crowds, denial of service
(DoS) attacks, or router/switch configuration failures.
In addition, today’s viruses and worms propagate very
quickly, and it does not take more than several minutes
to infect millions of machines on the Internet. Ideally,
online analysis should be able to detect such indica-
tive events in a timely manner to minimize the potential
malignant impacts.

While online traffic analysis has been studied for
a while, it is still intensively challenging due to several

0This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231, and by the U.S. Department of Energy, Office of Science, Office of Workforce
Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP).
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reasons. One of the primary challenges is the heavy
volume of network traffic to analyze within a finite
amount of time. A recent report forecasts that the In-
ternet traffic will increase threefold over the next five
years with an over 20% annual growth rate from 2015
to 20201. The past observation already confirmed the
traffic growth rate with a 27% annual increase of resi-
dential broadband traffic in 2007 [5]. With the today’s
computing trend, it is not hard to expect a greater use
of mobile and IoT devices that will further contribute
to the network traffic volume. For instance, recent
DoS attacks were conducted by a botnet comprising
hundreds of thousands of IoT devices2. To enable on-
line traffic analysis against the large-scale data, stream-
ing computation techniques have been widely studied,
and the sketch [2, 6, 4, 7] is an example technique
based on k-ary hashing. However, such existing meth-
ods are largely limited to a specific purpose such as a
heavy hitter detection using a simple frequency count-
ing method.

Another important challenge for effective traffic
analysis is to support multivariate functions of traf-
fic variables to help administrators identify unexpected
network events in an intuitive way. Traditionally net-
work traffic variables were independently analyzed,
and combining the individual results is left to the ad-
ministrators. For example, Opprentice [1] assumes
three variables of key performance indicator (the num-
ber of page view, the number of slow responses and the
80-th percentile of search response time) in monitor-
ing, and the work assumes that the variables are inde-
pendently analyzed to identify anomalous events. The
sketch mentioned earlier is also limited to give statis-
tics for a single traffic variable, without any means to
keep track of multiple variables in a combined way.
The probabilistic density information has been consid-
ered to take a snapshot of the network traffic for change

detection, but the current implementation is confined
with a single dimensional variable due to the compli-
cation of the extension to multiple variables [3].

To address the above critical challenges to achieve
effective online network traffic analysis, we propose a
new approach that offers a high-level state summary of
the network traffic from the multivariate features un-
der consideration. With this approach, the current state
of the network will display patterns compiled from a
set of traffic variables. We define “network state” as
a high-level summary of the network traffic with re-
spect to the tracked variables to capture the current sta-
tus of the network. The obtained pattern can be com-
pared with another with the previously observed pat-
terns. The detection problems in traffic analysis (e.g.,
change detection or anomaly detection) can thus be re-
duced to one of the pattern identification and classifi-
cation problems. The key contributions of this paper
can be summarized as follows.

• We present a new approach to multivariate, time-
series network traffic analysis as an underlying
technology for online monitoring applications,
such as change detection and anomaly detection.

• We introduce the framework model for online
network traffic analysis and our preliminary
work using clustered patterns for network state
representation and quantitative analysis with the
challenges and limitations we observed.

• We present a grid-based approximation model
for scalable, reliable-to-noise analysis with a
quantitative measure to estimate the similarity of
network states in different time windows.

• We demonstrate our proposed technique with the
tstat network traffic measurement collection

1http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.pdf

2http://www.eweek.com/security/ddos-attack-snarls-friday-morning-internet-traffic.html
3https://www.es.net/
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from the Energy Sciences Network (ESnet3) to
see its applicability.

The preliminary results were reported in our past
paper [8], and this paper extends it with further details
and new experimental results with the ESnet measure-
ment data. The organization of this paper is as follows.
Section 2 provides a summary of the closely related
studies. We present our framework model for online
traffic analysis in Section 3, and introduce our prelimi-
nary approach based on clustered patterns with its po-
tential and limitations in Section 4. We then discuss
a new technique based on a grid approximation model
for scalable, streaming-based analysis with our initial
results in Section 5. In Section 6, we analyze the traffic
trace collected from ESnet, the Department of Energy’s
dedicated research network, using the clustered pat-
tern technique and the grid-based model. We discuss
other topics including a brief comparison of the clus-
tered patterns and grid-based techniques in Section 7.
Finally, we conclude our presentation in Section 8.

2 Related Work

One of the widely studied methods for network
traffic summarization is sketch, which is designed par-
ticularly for heavy-hitter detection based on the data
streaming computation using a hash function [2, 4, 7].
Using a hash key extracted from the flow information
(e.g., a 64-bit key composed by the source and desti-
nation IP addresses in the flow), the sketch maintains a
hash table to keep the frequency information for each
key. The statistics of the hashed results can then be
used for the detection purpose (e.g., heavy-hitter). As
discussed, the sketch technique is not capable for mul-
tivariate analysis and limited to give statistics for a sin-
gle variable only.

In addition to sketch, other streaming data min-
ing techniques as well as sampling methods and data

reduction techniques were studied for network traf-
fic analysis by frequency counting [9, 10, 11], his-
togram [12], clustering [13, 14, 15, 16], sliding win-
dows [17, 18], wavelets [9, 19, 20], and dimensional-
ity reduction [21, 22]. Many of these sampling meth-
ods provide a quick understanding of the monitored
data stream, but characterizing accurate data patterns
from the streaming data is still a challenge, especially
with the recent hardware advances, which produces
data records at a much higher rate. While the previ-
ous methods are limited to capture a single traffic vari-
able and individual variables should be analyzed sepa-
rately, the critical hurdle is how to combine analysis on
multiple attributes for comprehensive analysis rather
than single dimensional streaming data analysis as dis-
cussed earlier. The key difference of the proposed ap-
proach in this work is in the ability to capture the mul-
tivariate traffic attributes to provide a comprehensive
view of the network state.

Visualization has also been widely accepted for
network management with the power of intuitive analy-
sis. CAIDA provides a tool for visualizing the Internet
topology using the Autonomous Systems (ASes) infor-
mation, which is helpful to understand the intercon-
nectivity of routing systems over the global Internet.4

Another tool provides a cyber-security map visualizing
global cyber attacks with the source, target, and attack
information in real time.5 Additionally, the NeTra-
Mark project [23] implemented tools for BLINK [24]
and Traffic Dispersion Graphs [25], mainly for traffic
classification.

3 Proposed Framework

In this section, we introduce our framework for
online traffic analysis with its operational scenario.
The proposed framework model is shown in Fig. 1.

The overall scenario is as follows. The raw traf-
fic data comes into the first module (“pre-processor”

4http://www.caida.org/research/topology/as_core_network/2014/
5http://map.norsecorp.com/#/
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Fig. 1. Proposed framework for online network monitoring

or PP1) that performs the first-line of data processing
including normalization and flow record construction.
The output of PP1 is forwarded to 1) “post-processor”
(or PP2) that performs in-depth analysis in a batch
manner and 2) “Network State Representation” (NSR)
that creates a pattern for each time window. We assume
that the time domain is partitioned by a predetermined
fixed interval, and NSR creates a pattern (or network
state si) for the associated time window wi from the
collected data.

NSR then reports the created pattern to the admin-
istrator, and passes it to “Catalog Repository” (CR) that
maintains the historic patterns (S = {si|i � 0}) for
future reference. PP2 annotates the post-analysis in-
formation to the pattern stored in CR as soon as the
batch processing is completed. The annotated infor-
mation could be anomaly-related labels, traffic classifi-
cation labels, etc., depending on the focus of analysis.
The administrator can access CR to retrieve the pat-
terns created in the past. For example, similar patterns
to the current one can be searched to get an idea for
interpretation. The component of “Quantitative Anal-
ysis” provides a tool to estimate the similarity of pat-
terns in question. For example, �i,j defines the degree
of changes between two states si and sj , as discussed
in Section 4.

In this paper, we focus on discussing the core el-
ements of NSR, QA, and CR in the framework. In
Section 4, we introduce our initial observations with

clustered patterns for network state representation and
quantitative analysis, and then discuss the challenges
and limitations.

4 Using Clustered Patterns

We initially studied clustering to capture the net-
work state from the collected traffic data within a finite
time interval. In this section, we briefly introduce the
basic concept of the clustered patterns with the discus-
sion of the challenges and limitations obtained from
our observations. The details of this technique with
two use cases of change detection and anomaly detec-
tion can be found from [26].

4.1 Clustering-Based Representation

We first describe how the clustered pattern rep-
resents a network state. For each time window in the
monitoring process, a clustering is performed against
the data points within the window, and the result of
the clustering represents the high-level network state of
that window. In this work, we employ the partitioning-
based clustering to reduce the pattern information into
a set of vectors, an element of which contains the clus-
ter centroid position, population, and sum of squared
errors. Specifically, we use the k-means technique for
clustering that has maintained its popularity with the
speed and simplicity, and can be scalable with paral-
lelism (e.g., a parallel version of the k-means++ [27]).
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This approach has the following potential bene-
fits. First, the clustering method has the ability to com-
bine multivariate attributes in a straightforward manner
without an excessive extra computational cost, which
has been one of the critical challenges for network traf-
fic analysis. Second, it is flexible to configure the num-
ber of clusters (k > 1) regardless of the number of vari-
ables to be tracked, thus simplifying the analysis pro-
cess. In addition, the network state information (with a
set of vectors with length k) would be handy and possi-
ble to compare one another. Thus, comparing the simi-
larity of given network states can be reduced to a prob-
lem of comparing two vectors.

We next discuss how to estimate the similarity of
the clustered patterns under comparison in a quantita-
tive manner. Measuring the similarity of two windows
is the fundamental question in the change detection
problem. We discuss the concept of “degree of change”
(�) that estimates the changes between two clustered
patterns representing the network states for the asso-
ciated time windows. � is defined as a quantitative
measure to estimate the similarity, calculated based on
the move of the centroid positions between two time
windows. This can be reduced to an assignment prob-
lem with the minimal cost (i.e., distance) between two
patterns.

In detail, the clustered pattern of a time window
Wi is a vector of clusters, Ci = {c1

i
, c

2
i
, ..., c

k

i
}. Sim-

ilarly, the clustered pattern of Wj would be Cj =

{c1
j
, c

2
j
, ..., c

k

j
}. Then �i,j is defined as the minimal

move of the centroid coordinates from Wi to Wj . With-
out knowing which cluster in Wi is mapped with one in
Wj , we find a set of pairs showing the minimal move.
Suppose a distance function D : Ci ⇥ Cj ! R. Then
the problem is reduced to the assignment problem that
finds a bijection f : Ci ! Cj with the minimal dis-

tance function:

�i,j =
X

l2Ci

D(l, f(l)).

We employ the Hungarian algorithm to solve this
assignment problem, which has O(k3) of the computa-
tional complexity [28]. Note that it is true �i,j = �j,i

and �i,i = 0.

4.2 Example of Clustered Patterns and Analysis

To see how it works, we apply the clustering tech-
nique on a 16-hour trace excerpted from the UNIBS
traffic trace, between 10AM on September 30, 2009
and 2AM on October 1, 2009 [29]. The dataset con-
tains the information for network flows6 with timing,
and the ground-truth data with the associated applica-
tion for each connection is provided [30]. As for statis-
tics, the average number of flows is 789 flows/hour
with a high degree of variance (min=20, max=7052).

Fig. 3. Breakdown of applications for time windows
(10AM–1AM), compiled from the ground-truth data in the
UNIBS data trace.

Fig. 2 demonstrates the clustering results over 16
time windows (over 16 hours). From Fig. 2, we can
see somewhat similar and dissimilar patterns over time.
For example, the pattern for 10AM time window is
quite different from the one for 11AM time window.
In contrast, the clustered patterns from 11AM to 5PM

6A flow is identified with five tuples of source IP address, source port number, destination IP address, destination port number, and
protocol in TCP/IP header
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Fig. 2. Clustering results against a UNIBS data trace [29] for flow duration on x-axis and average number of packets in flow
on y-axis. Note that cluster IDs were randomly selected by the clustering tool (R).

are visually similar. The three patterns for 8PM–10PM
time windows are also resembling, whereas the last
three time windows (11PM–1AM) have fairly distinc-
tive patterns.

In Fig. 2, � is a quantitative measure to estimate
the similarity, calculated based on the movement of the
centroid positions between two time windows. Thus,
it can be reduced to the assignment problem with the
minimal cost (i.e., distance), which can be simply cal-
culated using the Hungarian algorithm with O(k3) of
the computational complexity [28]. We can see that
the quantitative measure based on the centroid posi-
tion movement shows strong correlations with the vi-

sual patterns.7

Fig. 3 shows the composition of applications for
each window using the ground-truth information pro-
vided with the dataset. For example, the breakdown
graph (Fig. 3) shows a high degree of similarity from
11AM to 5PM and from 8PM to 10PM, respectively,
which agrees with the similarity of the clustered pat-
terns in Fig. 2. On the other hand, there is a high
degree of difference in the breakdown graph between
10AM and 11AM. Similarly, we can see huge differ-
ences from the windows of 11PM–1AM, suggesting
strong correlations with the patterns in Fig. 2.

Our preliminary experiments show that the clus-

7We normalized the centroid position values based on the max coordinate value, and hence, � should not go beyond k ·
p
2 in this

calculation (as one move cannot be greater than
p
2).
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tered patterns would be helpful to summarize multi-
variate features in analysis to represent the associated
network states. At the same time, we observed several
limitations with this method as discussed in Subsec-
tion 4.3.

4.3 Challenges and Limitations

The clustered patterns are intuitive to interpret
and lightweight with respect to the complexity since
a pattern can be represented with a vector of clus-
ters, each of which includes a centroid coordinate, sum
of squared errors, and so forth. At the same time,
we observed potential limitations. In this section, we
discuss the primary challenges we observed from the
clustering-based method: (1) robustness to sampling,
(2) data stream processing, and (3) robustness to noise.

4.3.1 Robustness to Sampling

A key requirement for the network state represen-
tation is a high degree of scalability. In this regard,
the clustered pattern method used in the preliminary
study may not be a good option. For example, we
observed that it takes 10 seconds to construct clusters
with 16,000 data points in a commodity PC with the
simple k-means that is known as a scalable method
for clustering. As discussed, the traffic volume in a
network becomes much heavier, and the MAWILab
trace [31] contains 10,000 flows per second. To relax
this concern, sampling could be considered like Net-
Flow [32] and sFlow [33]. However, we observed that
sampling is not viable for clustered patterns, as can be
seen from Fig. 4 that demonstrates the result of sam-
pling. From Fig. 4, we can see that the random sam-
pling results in a high degree of discrepancies, suggest-
ing ineffectiveness for the continuous monitoring. Al-
though not shown, we also computed �s between sam-
pled and non-sampled results and observed non-trivial
variations.

4.3.2 Data Stream Processing

Another problem with the clustered pattern
method is in its nature of the batch-style processing.
That is, clustering can be executed when all the data
points are available for the time window. However,
data streaming processing is a desired property for
online analysis with much greater scalability. One
well-known streaming computation technique is the
sketch [2, 6, 4, 7] that provides a probabilistic sum-
mary of a variable for analyzing network traffic data.

4.3.3 Robustness to Noise

A partition-based clustering for generating pat-
terns may be in a high degree of sensitivity to outliers.
Fig. 5 shows how only one or two outliers could sig-
nificantly impact and construct somewhat different pat-
terns. Although our initial observations with clustered
patterns were interesting, the simple partitioning-based
clustering would be ineffective to noises.

5 Grid-based Representation and Analysis

To relax the limitations of the clustered pattern-
based technique, we investigated a grid-based struc-
ture [34] with its computational potential for data
streaming support using approximation. In this sec-
tion, we introduce the network state representation us-
ing a grid structure and a quantitative measure to es-
timate the similarity of the grid patterns. For the
purpose of demonstration, we employ the KDDCup
1999 data (“kddcup.data 10 percent corrected”)8 that
has been widely used in the anomaly detection study.
We formed 16 windows from the dataset, each of which
contains 10,000 connections excerpted from the begin-
ning of the data file in order. Table 1 shows the sum-
mary of the 16 windows with respect to traffic compo-
sition.

8http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Fig. 4. Clustered patterns with random sampling: a sampling rate from no-sampling (leftmost) to 10% sampling (rightmost).

Fig. 5. Robustness to noise: even one or two different data points could impact significantly in the construction of patterns
when using a partition-based clustering technique.

Table 1. Traffic composition (10,000 connections per window)
Window AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP

NORMAL 7787 8392 9837 9720 2230 1332 0 5786 9587 1566 4483 0 15 3526 6964 0

DOS 2209 1607 0 278 7531 8174 10000 4079 120 7846 5516 10000 9985 6474 483 10000

U2R 4 0 0 0 1 0 0 0 3 1 0 0 0 0 20 0

R2L 0 1 52 2 6 7 0 33 1 0 0 0 0 0 1023 0

PROBE 0 0 111 0 232 487 0 102 289 587 1 0 0 0 1510 0

5.1 Network State Representation

We consider a grid structure to represent a net-
work state; hence, a network state consists of cells in
a d-dimensional space (Rd). The number of cells in
a grid space is determined by the resolution. For ex-
ample, there would be 1,024 cells in a 2D space if the
resolution is 32 for both x and y axes. For each data
point, there should be a mapping cell that contains an
integer counter. The counter is simply incremented,
and the density information can be easily inferred from
the counters. Thus, it is straightforward to perform this

technique in the streaming computation manner (rather
than executing it in a batch computation). The com-
plexity of this technique is proportional to the num-
ber of cells. Determination of the adequate resolution
is essential in this technique, as too small resolutions
may lead to losing the specific information while too
high resolutions will yield too many empty cells in the
space. We will discuss this again in Subsection 7.1.

The following pseudocode in Fig. 6 shows the
steps to create a grid representation for a time window
under the assumption of two-dimensional variables.
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Fig. 6. Pseudocode for the steps to create a grid repre-
sentation for a time window under the assumption of two-
dimensional variables.

Fig. 7 shows the representation of a single win-
dow (with 10,000 data points) in the KDDCup dataset.
From Fig. 7, we can see that the cells occupied by the
data points with the density level. The number of cells
in this representation is (64 ⇥ 64) = 4,096.

Fig. 7. An example of a grid-based representation of net-
work state with a resolution of 64 ⇥ 64.

To learn more about the grid-based structure, we
applied it for classification learning for the traditional
anomaly detection [35]. Through the experiments
with the original KDDCup dataset and the NSL-KDD
dataset [36], we observed 98.5% and 83% of detec-
tion accuracy, respectively, which are comparable to
the classical learning methods including decision tree
and random forest. The learning complexity is very
cheap and two orders of magnitude faster than the well-

known classification techniques.

5.2 Quantitative Analysis

The proposed framework model includes a tool to
estimate the similarity of patterns, which plays a key
role to identify changes and anomalies. As an initial
experiment, we established a simple measure that com-
pares two grid spaces in questions, using a Jaccard co-
efficient model. The similarity index for two patterns
of Pi and Pj is calculated as follows:

Si,j =
|Pi \ Pj |
|Pi [ Pj |

.

Thus, S = 1.0 indicates that the two windows
in question are identical, while S = 0.0 means that
the windows are completely unrelated each other. We
evaluated this simple measure against the 16 windows
in Table 1.

Fig. 8 demonstrates the similarity matrix calcu-
lated by the Jaccard coefficient model. From the ma-
trix, we can see some windows are highly similar,
while some other windows (such as AG, AL, and AP
with a full of DOS connections as shown in Table 1)
are relatively less similar to others. Interestingly, the
matrix shows that SAG,AL = 1.0, whereas SAG,AP =

SAL,AP = 0.0, although the windows contain DOS
connections only. From the dataset, we found that the
DOS attack in AG and AL is by Neptune, while it
is by Smurf in AP, which results in the extreme sim-
ilarity scores for those windows. As another exam-
ple, the window of AC contains R2L and PROBE con-
nections. Using the similarity measure, we observed
SAC,AI = 0.83 and SAC,AH = 0.79 as the most simi-
lar windows, and both of AH and AI contain R2L and
PROBE connections as well.
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Fig. 8. Similarity matrix using Jaccard Index (AA–AP): a
higher (darker) value indicates greater similarity between
the two windows.

In our initial experiment, we did not consider the
density information to compute similarity among win-
dows. It may be interesting to consider density distri-
butions and distribution comparison methods such as
quantiles estimation [37], optimal transport [38, 39],
and KS test [3] to establish a sophisticated measure to
estimate the similarity.

5.3 Catalog Repository

As described, the traffic data in a time window
is summarized into a pattern to represent the network
state. The pattern is then stored to CR for future ref-
erence and statistics. The formats of the pattern rep-
resentation may not be identical in NSR and CR. For
ease of exposition, we refer to the format of the pattern
in NSR as “representative pattern” and the other in CR
as “reference pattern”.

As discussed, we employed a partitioning-based
clustering to obtain patterns in our initial work. A
cluster created by the k-means technique is possibly
characterized with a set of attributes, such as the cen-
troid coordinate, the information related to the sum of
squares, and the number of points in the cluster. And
those cluster-related attributes were accounted to es-
tablish the similarity measures in our prior work. How-
ever, such a limited set of information may not be suffi-

cient to well characterize a cluster. As a result, the net-
work state represented with a set of cluster information
would be too abstract to indicate the actual summary
of the associated traffic data. Compared with this, the
grid-based representation is basically rich with the cell-
level information, including the occupancy and density
information.

For the reference pattern, there would be two
choices. The first choice is to use the identical method
that is used for the representative pattern; the other is
to implement a new model for the reference pattern.
For the first option, there is no additional overhead to
develop a new model for the reference pattern. How-
ever, the storage complexity could be a concern with
the first choice. In detail, the storage requirement for
each pattern will be O(cd) where c is the number of
cells and d is the number of dimensions. Since the ref-
erence patterns can be referred in the future to search,
for example, top-N patterns that are most similar to the
current pattern, the storage complexity will be closely
connected to the complexity for comparison. In this
case, the complexity of O(cd) might be too expensive
for a single pattern.

Fig. 9 demonstrates the use of the reference pat-
terns, showing the two patterns with the greatest index
scores compared with the window of AA. The result
shows that SAA,AB = 0.86 and SAA,AI = 0.79. It in-
dicates that 86% of the cells in the two patterns of AA
and AB are commonly occupied by the data points,
while 79% of the cells are common for AA and AI .
The breakdown information shows a high degree of
similarity between AA and AB, with a certain number
of denial of service records that are roughly 20% of the
total. We can also see that AI contains attack connec-
tions including DOS attacks; the breakdown shows a
high degree of similarity with AA but it is smaller than
the one between AA and AB.
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Fig. 9. Similarity estimation using the measure established based on Jaccard index.

6 ESnet Traffic Analysis

In this section, we demonstrate the use of our net-
work traffic analysis techniques with a research net-
work traffic measurement dataset, collected from ES-
net that offers the high-bandwidth, reliable network
connections among national laboratories in the US,
universities and other research institutions. The traffic
dataset contains the tstat logs, collected to analyze
how various network tuning settings impact TCP be-
havior and network throughput. tstat rebuilds each
TCP connection by looking at the TCP header in the
forward and reverse direction. The details about the
tstat tool can be found from [40].

Fig. 10. The complementary cumulative distribution
(CCDF) of the variables of the number of packets and the
max throughput of connection in the one-day trace in the
ESnet data.

In this experiment, we analyze the tstat data
to monitor the network state change over time. We
selected a subset of the measurement collection be-
tween 12:00PM and 2:40PM on May 9, 2016, to
form 16 10-minute windows (labeled from BA to BP),
without any bias in selection. The windows have
367 connections for each on average (min=157 and
max=721). We chose two variables of <number of
packets, max throughput> to evaluate the changes over
time. Fig. 10 shows the complementary cumulative
distribution (CCDF) of the two variables in a log-log
scale. Due to a high degree of skewness for the above
two variables, we performed normalization by apply-
ing a log function. We set the number of clusters to 4
(K = 4), chosen by the elbow method.

Fig. 11 demonstrates the clustered patterns for the
16 windows, and a group of windows shows somewhat
similar patterns, for example, {BC, BD}, {BE, BF}
and {BN, BO}. Fig. 12 shows the calculated degree of
changes (�s) for all-pair windows, and a lighter color
indicates a smaller change (and thus more similar) be-
tween the two windows in comparison. The overall re-
sults show that the quantitative measure produces fairly
relevant results with the visual representation.
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Fig. 11. Clustering results against the ESnet tstat data with two traffic variables of the number of packets on x-axis and max
throughput on y-axis (log scaled for both x and y axes). Each pattern shows the summary of a 10-minute collection.

Fig. 12. Delta (�) matrix based on the centroid position
moves: lower �’s (lighter colors) indicate smaller changes.

We next applied the grid-based model against the
ESnet dataset. Fig. 13 demonstrates the grid-based rep-
resentation for the dataset BA, with two different res-
olutions: (32 ⇥ 32) and (64 ⇥ 64) with respect to the
number of cells for a window. As in Fig. 7, the ex-
ponential decay is applied to consider the impact of
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(a) Number of cells = (32 ⇥ 32) (b) Number of cells = (64 ⇥ 64)

Fig. 13. Grid-based representation of BA with different resolutions.

(a) Number of cells = (32 ⇥ 32) (b) Number of cells = (64 ⇥ 64)

Fig. 14. Similarity matrix using Jaccard Index (BA–BP) with different resolutions: a higher (darker) value indicates greater
similarity between the two windows.
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density of each cell. As Fig. 13 indicates, choosing
a resolution would be an interesting part in this study,
although the two representations look closely similar
to each other.

Fig. 14 shows the similarity matrix based on
the Jaccard Index for the two grid representations in
Fig. 13. We can see that the overall patterns are almost
identical regardless of the resolutions. It would be in-
teresting to take a look at the similarity matrix with
the degree of changes (�’s). We also observe that a
high degree of correlation between Fig. 14 and Fig. 12.
For example, three windows of BE, BF, BG made rel-
atively small changes, and the similarity matrix shows
a relatively high degree of similarity. Another example
would be the windows of BN and BO, with a relatively
small change and a relatively high degree of similarity.
BA also shows the high � values with BE, BF, BK,
BL, and BP, and the similarity matrix shows that BA
is not much similar to BE, BF, BK and BL, but not to
BP. Since the ESnet data does not contains annotation
information, we leave further examination of accuracy
for the grid-based model as a future task. As we dis-
cussed, however, the grid-based method is reliable to
noises and straightforward for streaming-based com-
putation, enabling scalable analysis of network traffic
measurements.

7 Discussion

In this section, we compare the two presented
models for traffic summarization, and then discuss the
dimension reduction issue for pattern representation in
a visual way.

7.1 Comparison of the Summarization Models

Table 2 provides a summary of the comparison
between the clustered patterns and grid representation
models. The main benefit of the grid structure model
is that it is straightforward to create patterns in a data
stream computation manner; comparatively clustering

relies basically on the batch processing to expect ac-
curate results. The clustered pattern model is cheap
with respect to the storage complexity since a pattern
is represented with a vector of clusters (including cen-
troid coordinates, sum of squared errors, etc). On the
other hand, the grid-based model is more expensive be-
cause it needs to maintain the cell information in a two-
dimensional space. In addition, determining the reso-
lution would be an open question. For example, if the
resolution is (32 ⇥ 32), the number of cells is 1,024,
while it is 4,096 with the resolution of (64 ⇥ 64), as
in Fig. 13. Our future research tasks include the inves-
tigation of the impact of the resolution on the summa-
rization and complexity.

7.2 Visualization and Dimension Reduction

Visualizing network states would be desired and
beneficial for operators to recognize the state of the net-
work in an intuitive way. Although online monitoring
often limits the number of variables in analysis, there
would be a need to keep track of more than two vari-
ables, which makes it complicated to visualize. One
simple option is to create multiple plots in independent
2D spaces for each combination of variables. In that
case, it needs

�|V |
2

�
plots where |V | is the number of

variables. This option would be neither intuitive nor
scalable.

Another option is to use a dimension reduction
technique such as PCA, t-SNE, autoencoder, and other
reduction tools. Fig. 15 shows the result of clustering
with PCA against the 16-hour trace used in Fig. 2. In
this experiment, the data points were converted to cre-
ate z-scores for standardizing. We observed that the
results largely consent to ones in Fig. 2 with respect to
similarity. Grid-based patterns can also be created by
using a dimension reduction tool when we have more
than two traffic variables in the analysis. Examining
dimension reduction methods to see their efficiency for
our traffic summarization is also one of the interesting
research tasks.
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Table 2. Comparison of clustered patterns and grid representation
Clustered patterns Grid representation

Robust to sampling Weak Moderate

Stream processing Hard Easy

Robust to noise Weak Robust

Representation complexity Relatively cheap Relatively expensive

(O(k), where k is the number of cluster) (O(c), where c is the number of cells)

Fig. 15. Clustering with PCA with three attributes (the same 16-hour trace used in Fig. 2). The data points were transformed
using standardization for effective PCA analysis.

8 Conclusions

This paper presents a new approach to the high-
level online network traffic analysis using clustered
patterns and grid patterns. The main goal of this study
is to enable intuitive analysis of multivariate network
traffic attributes at high level. We first demonstrated the

use of clustered patterns with the observed challenges,
and next presented a grid-based model to overcome the
limitations of the clustered pattern-based technique,
with particular respect to the streaming computation
and robustness to noises. Finally, we demonstrated
network traffic analysis using the presented techniques
against the ESnet tstat trace.
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The proposed approach has several important im-
pacts. First, the multivariate approach for network traf-
fic analysis has not been explored well, and the pro-
posed method is new in the study area. Second, our
work enables data streaming processing for effective
online monitoring. Third, one of the core elements for
scalability in this work is an approximation model that
minimizes computational and storage complexity for
the pattern-based network state representation and the
catalog repository.

As this work is still ongoing, there would be many
research tasks to be explored in the future. We are cur-
rently examining several possible methods for the rep-
resentation of network states based on the grid struc-
ture and distribution models. For quantitative analy-
sis, new measures are also needed to be defined for the
newly established representation model. In addition,
visualization and dimensionality reduction need to be
investigated to efficiently support the high-dimensional
multivariate analysis with the defined representation
model, which will be helpful to enable an intuitive
monitoring.
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